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Abstract

Mortality forecasting has received increasing interest during recent decades due to the neg-
ative financial effects of continuous longevity improvements on public and private institutions’
liabilities. However, little attention has been paid to forecasting mortality from a cohort per-
spective. In this article, we introduce a novel methodology to forecast adult cohort mortality
from age-at-death distributions. We propose a relational model that associates a time-invariant
standard to a series of fully and partially observed distributions. Relation is achieved via a
transformation of the age-axis. We show that cohort forecasts can improve our understandings
of mortality developments by capturing distinct cohort effects, which might be overlooked by
a conventional age-period perspective. Moreover, mortality experience of partially observed
cohorts are routinely completed. We illustrate our methodology on adult female mortality for
cohorts born between 1835 and 1970 in two high-longevity countries using data from the Human
Mortality Database.
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1 Introduction

Continuous and widespread gains in life expectancy (Riley, 2001; Oeppen and Vaupel, 2002) are
increasingly challenging governments and insurance companies to provide adequate pension prod-
ucts and elderly health care in ageing societies. Mortality forecasting has thus gained relevant
prominence during the last decades, as relatively small differences in the expected lifetimes of
pensioners can have significant effects on financial institutions’ liabilities.

A growing number of models have recently been proposed to forecast human mortality using
stochastic methodologies that produce probabilistic assessments of the future. For comprehensive
reviews, see Booth (2006) and Shang et al. (2011). The vast majority of these techniques are based
on period mortality: financial institutions are typically interested in the mortality developments
of groups of individuals that comprise different birth cohorts. In addition, cohort data can be
outdated, unavailable or incomplete, hence period life tables have been developed to analyse a
hypothetical cohort if its age-specific death rates pertained throughout its life (Preston et al.,
2001).

The completion of the mortality experience of non-extinct cohorts is nonetheless interesting in
the actuarial domain. Insurance companies are indeed interested in the future longevity of groups
of people born in specific cohorts. In such settings, cohort forecasts are typically obtained by
first forecasting mortality in a period fashion, and then extracting cohort mortality patterns from
the diagonals of the projected Lexis surface. Although widely used, this approach seems rather
counter-intuitive and inefficient. In this article, we propose a more direct and alternative approach
to cohort mortality forecasting that is solely based on cohort data.

More generally, analysis and forecasts of cohort mortality are interesting and worth exploring
for two main reasons. First, survival in real birth cohorts is different from survival in the hypothet-
ical situation of unchanged period mortality rates because of: (i) tempo effects, (ii) cohort effects
and (iii) selection (for a full discussion, see Borgan and Keilman, 2018, Sect. 2). Second, cohort
mortality developments are actually observed, and they may differ from those of the synthetic co-
hort assumed in period life tables. As such, analysing and forecasting cohort mortality can provide
different insights on mortality developments than studies based on the period perspective.

Models to forecast cohort mortality are relatively few in the literature. Among the firsts to use
a cohort perspective, the Continuous Mortality Investigation (2007) employed the two-dimensional
P -spline model of Currie et al. (2004) to complete the mortality experience of cohorts in England
& Wales. Furthermore, Chiou and Müller (2009) proposed a functional data analysis approach for
forecasting cohort log-hazard functions using Swedish mortality data. More recently, the combi-
nation of an EM algorithm with an eight-parameter model for the age-at-death distribution was
suggested by Zanotto and Mazzuco (2017) for estimating deaths of non-extinct generations. Fi-
nally, Rizzi et al. (2019) proposed to complete partially observed cohort age-at-death distributions
using a penalized composite link model (Eilers, 2007), assuming a smooth underlying distribution
over age.

In this article, we introduce a novel methodology to forecast adult cohort mortality. Rather
than modelling mortality rates (the standard approach in mortality forecasting, as in, for example,
the Lee and Carter model and its variants), our model is based on the distribution of deaths. Age-
at-death distributions have recently received increasing attention in mortality forecasting (Oeppen,
2008; Bergeron-Boucher et al., 2017; Basellini and Camarda, 2019; Pascariu et al., 2019), as they
provide a different and rather unexplored perspective on mortality developments that can be lever-
aged by forecasters. For this reason, we extend a newly introduced methodology to model and
forecast adult age-at-death distributions (Basellini and Camarda, 2019) with the aim of analyzing
and forecasting mortality developments across cohorts.

This paper is organized as follows. In Section 2, we review the methodology proposed in this
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article, and the data that we employ for the analyses. Section 3 presents two applications of our
model to Swedish and Danish female adult mortality for the cohorts 1835–1970. In Section 4, we
discuss the results of our methods and conclude.

2 Methods & Data

2.1 The C-STAD model

Suppose we have two adult age-at-death distributions defined on the age range x ≥ 40. Specifically,
let f(x) be a “standard”, or reference, distribution and g(x) an observed distribution. Let t(x;θ)
be a transformation function of the age axis and a vector of parameters θ such that:

g(x) = f [t(x;θ)] , (1)

i.e. the distribution g(x) is derived from a warping transformation of the age axis of f(x). In
particular, the term “warping” originates in Functional Data Analysis (Ramsay and Silverman,
2005) and refers to the transformation of a time axis to achieve close alignment of functions.

We propose a parsimonious yet flexible transformation function t(x;θ) that captures adult
mortality developments across cohorts rigorously. Let θ′ = [s, bL, cL, dL, bU ] be a vector containing
the model’s parameters, where s = Mg −Mf is the difference between the modal ages at death
of the unimodal distributions g(x) and f(x). The proposed Cohort Segmented Transformation
Age-at-death Distributions (C-STAD) model can be written as:

t(x;θ) =

{
Mf + bL x̃+ cL x̃

2 + dL x̃
3 if x ≤Mg

Mf + bU x̃ if x > Mg (2)

where x̃ = x − s −Mf , and the subscripts L and U refer to the Lower and Upper parts of the
segmented transformation (i.e. before and after Mg), respectively.

The warping function t(x;θ) takes the form of a segmented transformation model which breaks
at the value of Mg. Below Mg, the transformation function is cubic, while it is linear above Mg.
Although acting on t(x;θ), the model’s parameters are directly related to the summary measures of
the age-at-death distributions. Specifically, while s captures the difference in modal ages between
g(x) and f(x), bL and bU measure the change in variability before and after the modal ages of
the two distributions. For the ages below Mg, cL and dL further measure differences in terms
of asymmetry and heaviness of the left tail between g(x) and f(x), respectively. In terms of
mathematical moments, the parameters bL and bU can be related to the variance of the distribution
before and after the mode, while cL and dL to the skewness and kurtosis of the distribution.

Figure 1 provides a graphical illustration of the C-STAD model. For ease of presentation,
we start from the simpler case in which bL = bU = 1 and cL = dL = 0. Substitution of these
parameters in Eq. (2) yields a unique transformation function t(x;θ) = x− s, and a corresponding
distribution g1(x) = f(x−s) via Eq. (1). In the left panel of Fig. 1, the standard distribution (grey
line) is shifted to the right by an amount equal to s, and g1(x) (blue line) maintains the original
shape of f(x). The right panel shows the transformation function related to this plain shifting
scenario. Note that a left-shift could be simply obtained with a negative value of s.

Different parameters’ values allow to capture broader mortality developments than the shifting
scenario described above. While bL and bU modify the variability of the distribution g2(x) =
f [t(x;θ)] (orange line, left panel) w.r.t. f(x) before and after the modal age at death, cL and dL
affect the asymmetry and heaviness of the left tail of g2(x) as compared to f(x). In the example
shown in Fig. 1, bL > 1 reduces the variability of g2(x) before Mg w.r.t. f(x), while bU < 1 increases
the variability of g2(x) after Mg w.r.t. f(x). The effects of cL and dL are difficult to discern from

3



Standard and transformed distributions

40 60 80 100

0.00

0.01

0.02

0.03

0.04

f(
x)

, f
(t

(x
))

Ages

Mg

Mf

s

bUbL,cL,dL

Standard f(x)
g1(x)=f(x − s)
g2(x)=f[t(x, θ)]

Transformation functions

40 60 80 100

20

40

60

80

100

Tr
an

sf
or

m
ed

 a
ge

s,
 t(

x)

Actual ages, x

bU

bL,cL,dL

sNo transf., t(x, θ)=x
Shifting transf., t(x, θ)=x − s
Segmented transf., t(x, θ)

Mg

Figure 1. A schematic overview of the Cohort Segmented Transformation Age-at-death Distribu-
tions model.
Source: authors’ own elaborations.

the left panel. However, the right panel shows the warping transformation t(x;θ) applied to f(x)
to derive g2(x); the transformation (orange line) is composed by a cubic function (due to non-zero
values of cL and dL) before the cut-off point Mg, and by a linear function above Mg.

2.2 Data

For illustrative purposes we present outcomes from the proposed model on adult cohort mortality
for females in two high-longevity countries, namely Sweden and Denmark. Long-term series of high
quality data are available for both countries, even at the very old ages (Vaupel and Lundström,
1994; Wilmoth and Lundström, 1996; Andreev, 2002), and the two countries display different
mortality developments. We therefore test the goodness-of-fit and forecast accuracy of our model
with respect to different mortality trajectories (Christensen et al., 2010). The data are derived from
the Human Mortality Database (HMD, 2019), which provides free access to detailed, consistent
and high quality historical mortality data for 43 different territories and countries (Barbieri et al.,
2015).

Our interest in this article is restricted to the senescent component of mortality, hence we start
our analyses from age 40. We therefore cover the age range that is of greater interest for pension
and insurance funds. Specifically, we employ two m × n matrices D = (dx,c) and E = (ex,c)
containing observed death counts and exposure-to-risk, respectively, classified by age at death
x = 40, . . . , 110+ and birth cohort c = 1835, . . . , 1970. Figure 2 offers a schematic overview of
the data structure by means of two Lexis diagrams: the first (left panel) shows the conventional
age-period structure, while the second (right panel) illustrates the age-cohort perspective that we
adopt in this paper. On one hand, we select 1835 as starting cohort of analysis for both populations
because it is the first cohort with observed data at all ages in Denmark, and to compare the
results for the two countries using the same fitting period. On the other hand, 1970 is the final
cohort because it contains enough observed data points in both countries (seven in Sweden, six in
Denmark) to estimate the three low parameters accurately (cf. Subsection 2.4).

Estimation and forecasting of the C-STAD parameters (Subsection 2.4) is performed on three
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Figure 2. Conventional age-period (left panel) and age-cohort (right panel) Lexis diagrams
illustrating the data structure and the division of cohorts into three groups. Here we assume that:
(i) 2015 is the most recent year of data collection, (ii) c̆ = 1905, and (iii) c̃ = 1925. The three
groups are then c1 = 1835, . . . , 1905, c2 = 1906, . . . , 1925 and c3 = 1926, . . . , 1970. The two colours
in the forecast years correspond to different parameters’ derivations (cf. Subsection 2.4): estimation
with missing data (light green) and forecasting (dark green).
Source: authors’ own elaborations.

different groups of cohorts. Therefore data are partitioned as follows:

D = [D1 : D2 : D3] E = [E1 : E2 : E3] . (3)

The first group, denoted by c1, contains the fully observed cohorts 1835, . . . , c̆, where c̆ corresponds
to the last cohort for which all data have been observed. As such, D1 and E1 have been observed
at all ages x for all cohorts in c1. The second group, denoted by c2, is composed by cohorts
c̆+1, . . . , c̃, where c̃ corresponds to the last cohort for which two age-groups above the adult modal
age at death have been observed. In other words, D2 and E2 are incomplete, i.e. data are not
available for higher ages and more recent cohorts. However this group of cohorts is selected such
that associated dx,c and ex,c have been observed for at least two data points above the modal age
x = M for all cohorts in c2. The choice of having two age groups above M is imposed by the
estimation of the parameter above the mode (cf. Subsection 2.4). Finally, the third group c3 is
composed by the remaining cohorts c̃+ 1, . . . , 1970, in which data are only partially available and
modal age at death is not observed. An illustration of the divisions of cohorts into the three groups
is provided in Figure 2. Figure 3 shows an example of the observed and missing data for three
age-at-death distributions belonging to the different groups of cohorts.

2.3 The standard distribution

The first step in the estimation of the C-STAD model is the derivation of the standard distribution
f(x). The C-STAD can be interpreted as a relational model (Brass, 1971), hence it is desirable to
include the representative features of the observed data for all cohorts in the computation of f(x).
Meanwhile, we also wish to remove the small random fluctuations that characterize the mortality
pattern of age-at-death distributions. To achieve both goals at the same time, we derive the age-
at-death distribution for each cohort 1835–1970 by a two-dimensional (2D) P -splines smoothing
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approach of cohort mortality (Eilers and Marx, 1996; Currie et al., 2004). Specifically, we assume
that observed death counts dx,c at given age x and cohort c are realizations of the random variable
Dx,c which follows a Poisson distribution (Brillinger, 1986):

Dx,c ∼ P(ex,c µx,c) , (4)

where exposure-to-risk ex,c are given and µx,c denotes the hazard or force of mortality (such as in,
for example, Brouhns et al., 2002). We smooth observed death counts using a tensor product of B-
splines bases over ages and cohorts, and exposures as an offset. To account for uncompleted cohorts
and still preserve the rectangular structure in the data, we include regression weights W = (wx,c)
whose elements are equal to one if the corresponding death counts dx,c and exposures ex,c have
been observed, and zero otherwise. Smoothing parameters over ages and cohorts are chosen by
Bayesian Information Criterion minimization. The R package MortalitySmooth (Camarda, 2012)
provides a direct implementation of this procedure.

The estimated smooth mortality surface allows us to derive smooth (partial) densities. We
align each density to the distribution of the first cohort (1835), and derive f(x) as the mean of
the aligned distributions. This landmark registration procedure has been suggested elsewhere as
it enhances the representativeness of f(x) while improving the goodness-of fit of the model (for
additional details, see Basellini and Camarda, 2019). Importantly, it should be noted that for
cohorts in c2 and c3, we only use the part of the aligned distribution corresponding to the observed
data (i.e. where regression weights are not zero).

Finally, we smooth the aligned mean and express the standard density f(x) as a linear com-
bination of equally spaced B-spline basis B(x) over ages x and coefficients βf specific to the
standard:

f(x) = exp [B(x)βf ] . (5)

In this last step, we chose a generous number of B-splines without any penalty term. This whole
procedure allows us to preserve all important features in the standard distribution (embodied in
βf ) after having removed unnecessary random fluctuations from the original data.
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2.4 Estimation and forecast of the C-STAD parameters

Given the estimated standard distribution, we can derive the C-STAD parameters θ′ = [s, bL, cL, dL, bU ]
for each cohort in 1835–1970. As anticipated in Subsection 2.2, we use three different approaches
to estimate θ, depending on the data available for each cohort; we thus divide cohorts into three
groups, as shown in Figure 2.

For the first group of fully observed cohort c1, we start by estimating the parameters vector
s. To properly capture cohort-specific mortality fluctuations, we employ a one-dimensional P -
spline approach, i.e. we smooth mortality for each cohort independently, numerically compute the
corresponding density and extract the modal ages at death for each cohort (for a similar approach
in a period perspective, see Ouellette and Bourbeau, 2011). From the modal ages we estimate the
parameter ŝ = (ŝc = Mc −Mf ) over cohorts in c1, where Mf denotes the mode of the standard
distribution, which by construction corresponds to the modal age at death for the cohort born in
1835.

Having derived an estimate of the shifting parameter ŝ, we can estimate the remaining param-
eters α′ = [bL, cL, dL, bU ]. We take advantage of the Poisson assumption in Eq. (4) and maximise
the following log-likelihood function:

lnLα (α | dx,c, ex,c, wx,c, ŝc,βf ) ∝
∑
x

wx,c
[
dx,c ln

(
µC-STADx,c

)
− ex,c µC-STADx,c

]
(6)

for each cohort c = 1835, . . . , c̆, where regression weights wx,c are zero in the case of unobserved
data at the highest ages, and µC-STADx,c denotes the estimated hazard of the C-STAD model. In words,
the optimization procedure looks for a combination of parameters α̂ that produces, for each cohort,
an age-at-death distribution whose corresponding hazard maximises the log-likelihood in Eq. (6).
The associated age-at-death distribution can be written as follows:

ĝc(x) = exp [B(xt)βf ] where xt = t(x; ŝc, α̂) . (7)

The hazard corresponding to ĝc(x) is computed using standard life-table formulas (Preston et al.,
2001).

For the second group of partially observed cohorts c2, we start again from the shifting param-
eter s. We use the same estimation approach used in c1: data are available until the ages above
the mode, therefore the smoothing approach produces an estimate of Mc and ŝ over cohorts in c2.
With respect to the remaining parameters, we also follow the same approach: we maximize Eq. (6)
for each cohort c = c̆ + 1, . . . , c̃, the only difference being that zero regression weights correspond
to the missing data above the mode of the partially observed cohorts. It should be noted here
that the missing data only influence the estimation of bU , as complete data are observed below the
mode for all cohorts in this group.

For the third group of partially observed cohorts c3, we employ a mixture of forecasting and
estimation to determine the C-STAD parameters. The lack of data above the modal age at death
makes it impossible to estimate the parameter s and compute the log-likelihood in Eq. (6). Hence,
we start from the time-series of the estimated parameters ŝ and b̂U over cohorts in c1 and c2 to
compute their forecasts for cohorts c3.

From a theoretical perspective, these two parameters are related by the fact that only mortality
changes occurring above the mode can modify its value (cf. Appendix B in Canudas-Romo, 2010).
Correlation analyses for the two countries under study confirm the strong relation between the two
series (Pearson correlation of 0.96 and 0.90 for the time-series in first differences for Sweden and
Denmark, respectively). As such, we specify a vector autoregressive (VAR) model of order one
with constant for the two (differenced) parameters, and we forecast their values for all cohorts c3.
The R package vars allows us to perform model selection and estimation (Pfaff, 2008a,b).
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Then, we take the forecast values of ŝ and b̂U as given, and we estimate the remaining param-
eters ᾰ′ = [bL, cL, dL] by maximizing the log-likelihood:

lnLᾰ
(
ᾰ | dx,c, ex,c, wx,c, ŝc, b̂Uc ,βf

)
∝
∑
x

wx,c
[
dx,c ln

(
µC-STADx,c

)
− ex,c µC-STADx,c

]
(8)

for each cohort c = c̃+ 1, . . . , 1970. In contrast to the estimation procedure in c2, here the missing
data influence the estimation of the parameters associated to the ages below the modal age at
death.

The estimate θ̂ for each cohort in 1835–1970 allows us to derive a complete set of age-specific
mortality measures, i.e. we can complete the mortality experience for the partially observed cohorts
of our analysis. In order to derive the C-STAD confidence intervals (CI)1, we employ a bootstrap-
ping procedure (Efron and Tibshirani, 1994). As suggested by Keilman and Pham (2006), we
consider the uncertainty related to: (i) the estimated parameters, and (ii) the forecast values of s
and bU . The first source of uncertainty is accounted for by generating bootstrap death counts from
the C-STAD deviance residuals (as in, for example, Koissi et al., 2006; Renshaw and Haberman,
2008; Ouellette et al., 2012). Appendix A provides more details on the computation of deviance
residuals and bootstrap death counts. The second source of uncertainty is considered by simulating
future values of the VAR model. We employ 40 different matrices of bootstrap death counts, and
for each of these, we refit the C-STAD model and simulate 40 future values of s and bU . From
the 1600 resulting simulations, we take the lower and higher deciles to construct 80% pointwise
confidence intervals.

Finally, routines developed to fit and forecast the C-STAD model were implemented in R (R
Development Core Team, 2018) and are publicly available, and all the results presented in the
following Section are fully reproducible at https://github.com/ubasellini/C-STAD.

3 Results

3.1 Out-of-sample validation of the C-STAD model

Before estimating the proposed C-STAD model to complete partially observed cohorts, we first
assess the accuracy of the C-STAD model by performing six predictive out-of-sample validation
exercises on Swedish and Danish adult females. Specifically, we pretend that the last year of
collected data is 2015 − δ, where δ = 10, 15, 20, 25, 30 and 35 years. We then fit the C-STAD
model to the fully observed cohorts c1 = 1835, . . . , 1905 − δ and we forecast mortality δ years
ahead. We then compare the forecast life expectancy at age 40 (e40) and the Gini coefficient at
age 40 (g40)2 with the observed out-of-sample values. Both measures of longevity (the former) and
lifespan variability (the latter, which further measures the lifespan inequality within a population)
are indeed useful to evaluate the accuracy of mortality forecasts (Bohk-Ewald et al., 2017).

An explicative example of this procedure is useful to clarify the out-of-sample exercises. Let us
consider δ = 10: then, the last year of fully observed data is 2005. We fit the C-STAD to the fully
observed cohorts c1 = 1835, . . . , 1895, and we forecast 10-year ahead. By doing so, we complete
the mortality experience of the partially observed cohorts 1896, . . . , 1905, and for each of these, we
compute and compare the estimated e40 and g40 with the observed ones.

It is worth mentioning at this point that, for the lower values of δ, forecasting is achieved
simply by fitting the C-STAD on the partially observed cohorts c2. In the explicative example
above, where the last data collection occurred in 2005, the cohort 1896, for instance, has been

1to avoid confusion, we use the general term CI for all cohorts analysed, even when intervals are constructed from
the mixture of forecast and estimated parameters (i.e. cohorts c3).

2in all analyses, we multiplied the Gini value by 100 in order to have a comparable magnitude with e40.
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observed at all ages except 110. We thus take advantage of the nature of cohort data and consider
all possible observations to complete the mortality experience of this partial cohort. Conversely,
for higher values of δ, forecasting is achieved by considering also the cohorts c3, which require the
combination of forecasting and estimation of the C-STAD parameters.

In addition to the C-STAD, we perform the same out-of-sample exercises with the 2D P -
splines approach of Currie et al. (2004). This is indeed the only model that, up to our knowledge,
has been employed to forecast cohort mortality from a cohort perspective (Continuous Mortality
Investigation, 2007) and is readily implemented in the R software (in the MortalitySmooth package,
Camarda, 2012). We do not consider other methodologies, such as the Lee and Carter (1992) model
and its variants, because cohort forecasts with these approaches are derived from period ones, and
the comparison would not be objective (for example, forecast values depend on the length of the
fitting period, whose choice would be subjective and not comparable in such exercise).

Table 1 presents the results of our analysis. The first and second columns contain the cohorts
used for fitting and forecasting the C-STAD and 2D P -splines models, respectively. The third
column contains the forecast horizon of the out-of-sample exercise, while the fourth column the
measure analysed (e40 and g40). Results are shown in the last four columns. We assess the accuracy
of the point forecasts by computing the root mean square error (RMSE):

RMSE =

√√√√1

δ

δ∑
c=1

(ŷc − yc)2 ,

where δ is the forecasting horizon, and ŷc and yc are the forecast and observed out-of-sample values
of either e40 or g40.

Sweden Denmark

Fitting
cohorts

Forecast
cohorts

Horizon Measure C-STAD 2D P -spline C-STAD 2D P -spline

e40 0.08 0.08 0.08 0.08
1835–1895 1896–1905 10y

g40 0.09 0.10 0.08 0.08
e40 0.07 0.09 0.07 0.08

1835–1890 1891–1905 15y
g40 0.08 0.10 0.07 0.12
e40 0.05 0.08 0.06 0.08

1835–1885 1886–1905 20y
g40 0.09 0.11 0.06 0.12
e40 0.04 0.08 0.03 0.08

1835–1880 1881–1905 25y
g40 0.10 0.11 0.11 0.14
e40 0.06 0.09 0.03 0.11

1835–1875 1876–1905 30y
g40 0.10 0.14 0.11 0.19
e40 0.14 0.08 0.05 0.14

1835–1870 1871–1905 35y
g40 0.04 0.13 0.06 0.22

Table 1. Root mean square error (RMSE) of the C-STAD and 2D P -spline forecasts of e40 and
g40 for adult females in Sweden and Denmark in six out-of-sample validation exercises: forecast
horizon of 10, 15, 20, 25, 30 and 35 years. Lower values of the RMSE (in bold, assessed using all
available decimals) correspond to greater forecast accuracy.
Source: authors’ elaborations on data from the Human Mortality Database (2019).

The table shows that the C-STAD forecasts are accurate in completing the mortality experience
of partially observed cohorts. The RMSE values of both e40 and g40 are low across the six exercises,
and they do not increase significantly with the forecasting horizon. Additionally, C-STAD forecasts
are more accurate than those of the 2D P -spline model. Very similar results are obtained by
employing different prediction accuracy measures, such as the MAPE and MAE (see Appendix
B).
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Figure 4. Observed and C-STAD estimated remaining life expectancies at age 40 (e40, left panel)
and Gini coefficient at age 40 (g40, right panel) for adult females in Sweden and Denmark for the
fully observed cohorts 1835–c̆ (where c̆ is 1906 for Sweden and 1905 for Denmark).
Source: authors’ elaborations on data from the Human Mortality Database (2019).

3.2 Mortality developments for Swedish and Danish females, cohorts 1835–
1970

In this Subsection we show the results of employing the C-STAD model to estimate and forecast
adult female cohort mortality in Sweden and Denmark for the cohorts 1835–1970. The estimated
and forecast parameters are shown in Appendix B. Figure 4 shows the observed and fitted remaining
life expectancies at age 40 (e40) and Gini coefficient at age 40 (g40) in the two population analysed
for the fully observed cohorts c1 (1835–c̆, where c̆ is 1906 for Sweden and 1905 for Denmark). The
two graphs provide evidence on the goodness-of-fit of the C-STAD model, whose estimates are very
close to the observed values for both measures in the two populations. Inspection of the deviance
residuals (shown in Appendix B) provides additional evidence on the adequacy of the C-STAD
model.

Figure 5 shows the observed (cohorts c1) and completed (c2 and c3) e40 and g40 computed
with the C-STAD (with 80% pointwise confidence intervals) and 2D P -spline model for the two
population analysed. Despite sharing similar country trends in the fully observed cohorts c1, it
is interesting to observe the different mortality developments in the partially observed cohorts
c2: while Swedish adult females show continuous improvements in longevity and lifespan equality,
Danish ones display a stagnation of e40 and an increase in lifespan inequality. The trends of
the mortality measures for the partially observed cohorts are similar across the models, with the
exception of Danish e40: the increase of the 2D P -spline forecast e40 is much faster then for the
C-STAD model, resulting in a crossover among the two populations. Moreover, it is interesting
to observe that the C-STAD confidence intervals are rather narrow for both countries in c2 (as
the great majority of data is observed for these cohorts), while they increase in the cohorts c3

proportionally to the amount of missing data. Note that c̃ is 1925 and 1927 for Sweden and
Denmark, respectively.

The age-specific mortality rates analysis shown in Figure 6 offers additional insights on cohort
mortality developments of the two populations. In the top panels, observed, fitted and forecast
mortality rates over cohorts are shown for some selected ages. In addition to the goodness-of-fit
of the C-STAD model, the graphs highlight diverse age-specific developments in the two countries:
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Figure 5. Observed (cohorts c1) and completed (c2 and c3) remaining life expectancies at age
40 (e40, left panel) and Gini coefficient at age 40 (g40, right panel) for the C-STAD (with 80%
confidence intervals) and 2D P -spline models for adult females in Sweden and Denmark for the
cohorts 1835–1970.
Source: authors’ elaborations on data from the Human Mortality Database (2019).

for example, mortality at ages 40 and 60 of Danish cohorts born at the beginning of the twentieth
century did not improve, resulting in the atypical trends of the summary measures shown in Figure
5 (stagnation of e40 and increase of g40). In the bottom panels, mortality rates over all ages are
shown for some selected cohorts. This second perspective shows how the shape of the mortality
curve, appropriately captured by the C-STAD model, changed over time: for example, mortality
at young adult ages was still relatively high in both countries for the 1835 cohort, with the curve
being rather flat in the age range 40–50. The subsequent mortality decline at all ages, mainly
attributable to improvements in sanitary environment, public hygiene and nutrition (McKeown,
1976), clearly emerges from Figure 6. An additional interesting observation is that the confidence
intervals of the C-STAD widens as expected: for example, variability increases with age for the
completed cohorts, as fewer age-specific data have been observed at higher ages. Finally, Figure 7
shows the observed and C-STAD age-at-death distributions for the three cohorts analysed in the
previous panels.

4 Discussion

Mortality forecasting has drawn considerable interest in recent decades among academics and fi-
nancial sector practitioners due to the increasing challenges posed by population ageing. Advances
in the field have almost exclusively been made on period mortality, as the most recent and innova-
tive techniques are based on modelling and forecasting different functions of period life tables (see,
for example, Lee and Carter, 1992; Cairns et al., 2006; Raftery et al., 2013). When considered,
cohort effects in mortality modelling and forecasting are typically analysed within an age-period
perspective (Renshaw and Haberman, 2006; Cairns et al., 2009; Plat, 2009; Dokumentov et al.,
2018).

In this article, we take an alternative perspective and introduce a new methodology to model
and forecast mortality from cohort data. An important advantage of cohort forecasts is that they
allow to complete the mortality experience of non-extinct cohorts, thus enabling the derivation of
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Figure 6. Observed, fitted and forecast age-specific mortality rates for selected ages (top panels)
and for selected cohorts (bottom panels) with 80% confidence intervals for females in Sweden and
Denmark aged 40-110+ for the cohorts 1835–1970.
Source: authors’ elaborations on data from the Human Mortality Database (2019).

their mortality developments. Our approach focuses on cohort age-at-death distributions: specifi-
cally, we propose a warping transformation of the age-axis of a standard distribution to describe and
forecast adult mortality developments across cohorts. Since we focus on the cohort perspective, we
denote our methodology Cohort Segmented Transformation Age-at-death Distributions (C-STAD)
model. Warping transformations and skewing procedures have already been fruitfully employed to
model distributional changes (see, e.g., Fernández and Steel, 1998; Camarda et al., 2008).

Our methodology is inspired by the Segmented Transformation Age-at-death Distributions
(STAD) model recently proposed by Basellini and Camarda (2019) to forecast adult age-at-death
distributions. In addition to shifting the focus from period to cohort mortality, our methodology
extends the STAD to a cubic transformation before the modal age at death. The additional
parameters cL and dL are indeed necessary to adequately describe cohort mortality developments
at young adult ages. A possible explanation for this is related to the significant improvements in
mortality, especially at younger adult ages, across the cohorts that we analyse (cf. Fig. 6). Non-
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Figure 7. Observed, fitted and forecast age-at-death distributions for selected cohorts (bottom
panels) with 80% confidence intervals for females in Sweden and Denmark aged 40-110+.
Source: authors’ elaborations on data from the Human Mortality Database (2019).

linear transformation functions above the mode were tested too, but they did not provide a better
fit compared to a linear transformation function.

Only a handful of models have been proposed to directly forecast cohort mortality so far (Chiou
and Müller, 2009; Zanotto and Mazzuco, 2017; Rizzi et al., 2019). One of the main reasons for
the limited efforts in this direction is the heavy data demands that such models require. However,
this problem is reduced when only adult mortality is considered (Booth, 2006). As such, the issue
does not affect us to a great extent, as our interest in this article is restricted to adult mortality
only.

We have shown the results of fitting and forecasting cohort mortality with the C-STAD model
for Swedish and Danish adult females for the cohorts 1835–1970. Our methodology is accurate
from a point forecast perspective: for each population, we performed six out-of-sample validation
exercises of different forecast horizons. The resulting point forecast errors are generally small, even
for the longer forecast horizons. Additionally, the C-STAD forecasts are consistently more precise
than those of the 2D P -spline model of Currie et al. (2004), which has been already used to directly
forecast cohort mortality (Continuous Mortality Investigation, 2007).

Our results allow us to derive age-specific and summary measures of mortality, such as remain-
ing life expectancy and Gini coefficient at age 40 (e40 and g40), for all cohorts of the population
analysed. Although following similar trends to the 2D P -spline model, C-STAD estimates of e40

seem more coherent when considered together, lacking the rapid increase and cross-over of Danish
forecast displayed by the 2D model. With respect to Danish forecasts, it is interesting to observe
a stagnation of e40 and an increase of g40 for the cohorts 1910–1930. Such results are consistent
with other findings in the literature (see, e.g., Fig. 4 in Jacobsen et al., 2002), which have been
attributed to the smoking behaviour of Danish women (Jacobsen et al., 2006; Lindahl-Jacobsen
et al., 2016).

To conclude, the C-STAD model offers great prospects for mortality forecasting from the cohort
perspective. Insurance companies would benefit from employing our model to assess their solvency
needs, as the model provides a direct approach to complete the mortality experience of non-extinct
cohorts. The R code provided with this article allows a fast and freely available opportunity for
this purpose.
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A Deviance residuals and bootstrap death counts

Model residuals are routinely analysed to explore the goodness-of-fit of a model as well as the
adequacy of assumptions about error terms. Within a GLM setting (such as the Poisson considered
here), deviance residuals are often used to measure discrepancy between fitted and actual data.
For the Poisson distribution they are given by:

rD = sign(dx,c − d̂x,c)
√

2

[
dx,c ln

(
dx,c

d̂x,c

)
−
(
dx,c − d̂x,c

)]1/2

(9)

where dx,c and d̂x,c denote the observed and fitted death counts at age x and for cohort c, respec-
tively (McCullagh and Nelder, 1989).

Deviance residuals can be further employed to take into account the uncertainty related to the
estimation of a model parameters as suggested by Koissi et al. (2006). Specifically, bootstrap death
counts can be computed by resampling deviance residuals with replacement and mapping them
to corresponding death counts. We refer the interested reader to Renshaw and Haberman (2008)
for details on the inverse formulas, which are based on the seminal work of Efron and Tibshirani
(1994).

B Section 3: additional results

In this appendix, we present additional results related to Section 3.

First, we report the out-of-sample results of Subsection 3.1 derived from employing two dif-
ferent prediction accuracy measures. In addition to the root mean square error, we computed the
mean absolute error (MAE) and the mean absolute percentage error (MAPE):

MAE =
1

δ

δ∑
c=1

|ŷc − yc| ,

MAPE =
1

δ

δ∑
c=1

∣∣∣∣ ŷc − ycyc

∣∣∣∣ ,
where δ is the forecasting horizon, and ŷc and yc are the forecast and observed out-of-sample values
of either e40 or g40.

Tables B.1 and B.2 show the out-of-sample results obtained using the MAE and the MAPE,
respectively. The results are very similar to those obtained with the RMSE shown in Table 1:
the C-STAD forecasts are accurate in completing the mortality experience of partially observed
cohorts, with forecasts errors generally low and smaller than the 2D P -spline model.

Second, we provide additional results with regard to Subsection 3.2. Figure B.1 shows the
fitted and forecast C-STAD parameters with 80% confidence intervals for Swedish and Danish
adult females for cohorts 1835–1970.

We performed diagnostic checks on the fitted C-STAD model for the two populations analysed
in this paper by using Equation (9). Poisson deviance residuals for the two populations are shown
in Figure B.2. No clear patterns emerge from this graphical analysis, with the exception of the
years corresponding to the Spanish flu and the World War II.
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Sweden Denmark

Fitting
cohorts

Forecast
cohorts

Horizon Measure C-STAD 2D P -spline C-STAD 2D P -spline

e40 0.08 0.06 0.07 0.07
1835–1895 1896–1905 10y

g40 0.07 0.08 0.06 0.07
e40 0.07 0.07 0.06 0.07

1835–1890 1891–1905 15y
g40 0.07 0.08 0.06 0.09
e40 0.05 0.07 0.06 0.07

1835–1885 1886–1905 20y
g40 0.06 0.09 0.05 0.09
e40 0.03 0.06 0.03 0.07

1835–1880 1881–1905 25y
g40 0.07 0.08 0.08 0.10
e40 0.04 0.07 0.02 0.08

1835–1875 1876–1905 30y
g40 0.08 0.12 0.07 0.13
e40 0.09 0.07 0.04 0.10

1835–1870 1871–1905 35y
g40 0.03 0.10 0.05 0.17

Table B.1. Mean absolute error (MAE) of the C-STAD and 2D P -spline forecasts of e40 and
g40 for adult females in Sweden and Denmark in six out-of-sample validation exercises: forecast
horizon of 10, 15, 20, 25, 30 and 35 years. Lower values of the MAE (in bold, assessed using all
available decimals) correspond to greater forecast accuracy.
Source: authors’ elaborations on data from the Human Mortality Database (2019).

Sweden Denmark

Fitting
cohorts

Forecast
cohorts

Horizon Measure C-STAD 2D P -spline C-STAD 2D P -spline

e40 0.20% 0.16% 0.19% 0.19%
1835–1895 1896–1905 10y

g40 0.42% 0.45% 0.35% 0.36%
e40 0.17% 0.19% 0.16% 0.19%

1835–1890 1891–1905 15y
g40 0.36% 0.45% 0.30% 0.47%
e40 0.13% 0.19% 0.15% 0.18%

1835–1885 1886–1905 20y
g40 0.34% 0.46% 0.27% 0.44%
e40 0.08% 0.17% 0.08% 0.18%

1835–1880 1881–1905 25y
g40 0.40% 0.44% 0.42% 0.51%
e40 0.10% 0.20% 0.07% 0.23%

1835–1875 1876–1905 30y
g40 0.42% 0.59% 0.39% 0.63%
e40 0.22% 0.19% 0.12% 0.29%

1835–1870 1871–1905 35y
g40 0.14% 0.51% 0.23% 0.81%

Table B.2. Mean absolute percentage error (MAPE) of the C-STAD and 2D P -spline forecasts
of e40 and g40 for adult females in Sweden and Denmark in six out-of-sample validation exercises:
forecast horizon of 10, 15, 20, 25, 30 and 35 years. Lower values of the MAPE (in bold, assessed
using all available decimals) correspond to greater forecast accuracy. Source: authors’ elaborations
on data from the Human Mortality Database (2019).
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